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• electro-thermal integrated circuit: basic concept

• the MIT effect

• MIT resistor as memristor

• new thermal-electric device (phonsistor) and the 

• (CMOS compatible) thermal-electric logic circuit 

(TELC)

• nanosized CMOS versus TELC

• analogy between neurons and TELC

• some measured results (thermal OR and AND gate)    

• S/W analysis

Outline

„Nothing beats scaled silicon but nanotechnology can complement”
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Electro-thermal
integrated circuit:
the thermal-function 
4-quadrant multiplier

diffused resistance heaters 
arrays of Si-Al contacts

Author: V. Székely Technical University of Budapest

http://digital-library.theiet.org/search;jsessionid=3djckxsb4h080.x-iet-live-01?value1=&option1=all&value2=V.+Sz%c3%a9kely&option2=author
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Electro-thermal integrated circuit: basic 
concept (TCL: thermally coupled logic)
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Electro-thermal integrated circuit: basic 
concept (TCL: thermally coupled logic)

The forward voltage of 
silicon diodes (p-n junctions) 
decrease about a2 mV/K at a 
constant forward current The 
early idea for thermal-
electronic logic circuit (TELC) 
operates with p-n junctions 
and control resistors. Either of 
input resistors is heated up, 
the output voltages decrease 
(NOR logic function).
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Problems: low power 

gain, signal 

regeneration, fan-out.

Something different is 

needed, instead of 

simple pn junctions!
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Optical and electrical switching 
characteristics of MIT effect induced by 
Joule-heating method. Very high optical 
density films with T(l)≈ 0 @ 1550 mm in 
metal state(red line).

Metal-Insulator-Transition (MIT) VO2 thin films:

MIT effect

T

RMIT
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MIT memristive effect

resistor: no memory, ohmic

capacitor: charge memory

inductor: current memory

memristor: charge memory, ohmic
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SeMgO2-V2O5, Jc-E, 88 mm/5.82 mm (Pt elect.); 509 W , step 0.2 V, delay 0.5 s 
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Applications
• (New) functional device by thermal 
coupling (phonon coupler, phonsistor).

Properties of the phonsistor: 
- active device 
- ohmic input and 
- thyristor-like output 

characteristics
- it saves the output state
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Iout

Vout

VinIin

Ballistic transport, thermalisation in the SMT: 

Vin

Input power: P=VinIin

SeMgO2-V2O5, Jc-E, 88 mm/5.82 mm (Pt elect.); 509 W , step 0.2 V, delay 0.5 s 
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minority carrier diffusion
ballistic transport of electrons 
through the metal base 

Bipolar 
transistor and 
metal base 
transistor 
analogy
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Phonsistor – bipolar transistor
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Using V as power supply: 
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Using I as power supply: 
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(Vin)
2/Rin) is much higher than the power dissipated on the MIT resistor (I2RMIT)
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High signal condition at the output: 
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SeMgO2-V2O5, Jc-E, 88 mm/5.82 mm (Pt elect.); 509 W , step 0.2 V, delay 0.5 s 
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VoutIout

Applications

• New functional device by mutual thermal 
coupling (reciproque phonsistor).

Thermally coupled logic (TCL) next slides!

Properties: 
- active device (thyristor-like characteristics),
- it saves both input and output states
- symmetric (symmetry depends on size of the resistors)
- and “reciproque” (“input” can be switched on from the “output”, too) !
- the output conditions can be seen from the input side, too !
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Input (?) Output (?)
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• New functional logic cell by mixed 
thermal coupling

V
O

2

Input(s), 
independent 
from each 
other

Output(s), 
controlled by 
input(s), but 
they can 
control each 
other too

V
O

2

VinIin
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Electro-thermal integrated circuit: basic 
concept (TCL: thermally coupled logic)

(V
O

2
)
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2

Input(s) Output

•OR gate:                                        (three input)

•AND gate: 

•Complex (AND OR) gate: 

V
O

2 Thermal 
diffusion 
length
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Patent (phonsistor, 

thermal-electric 

integrated circuit)  

submitted to the 

Hungarian 

Patent Office by the 

Budapest University of 

Technology and 

Economics

1

7
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Thermal diffusivity:

In heat transfer analysis, thermal diffusivity (symbol: a ) is 

the ratio of thermal conductivity to volumetric heat capacity.

where:

• : thermal conductivity (SI units: W/(m K) ) 

• : volumetric heat capacity (SI units: J/(m3K) ) 

• : density (SI units: kg/(m3) ) 

• : specific heat capacity (SI units: J/(kg K) ) 

Thermal diffusion length (characteristic lenght at given time scale):

a~106 m2/s (SiO2), time is 10-10 sec, than Lth=10-8 m (10nm) 

a~6x105 m2/s (Si), time is 10-10 sec, than Lth=7x10-8 m (70nm) 
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Electro-thermal integrated circuit: a bit 
more…
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Input(s) Output

V
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•Electrical coupling: NOR

•Thermal coupling: OR

Power supply

1 0 (low voltage level)

1

1 (high temperature level)

Practical realisation: vertical (three dimensional thermal 
IC, possibly stacked, see more later)

Pull up 
resistor
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loadline

Two, stable 
operating points
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Electro-thermal integrated circuit: thermal 
transmission line with three OR/NOR input

1

Power supply

Output

propagation of the thermal „1” state, signal regeneration



eet.bme.hu
© BME Department of Electron Devices, 2010.

21

Some ideas for practical realisations:

Vertical (three dimensional thermal IC), cross section:

Silicone (with conventional CMOS integrated circuit)   

SiO2 , thermal and

electrical isolator 

Cu, or 

carbon 

nanotubes:

thermal

ground

for thermal

separation

Cu, or 

carbon 

nanotubes:

thermal

ground

for thermal

separationVO2 VO2

OR AND OR

VO2

OR

Thermal diffusion 
length
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Some ideas for practical realisations: CMOS 
compatibility

Vertical (three dimensional thermal and CMOS IC), cross section:

CMOS IC
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Some ideas for practical realisations: real size 
and scalability

Geometry, volume Power 

supply 

voltage

Clock

frequency

Number of 

components

Recent CMOS gate 

properties:

(22+22)x50x50 nm, 110000 nm3 0.8-0.7 V 4 GHz 2 (“driver-loader”)

Theoretical limits (over-

estimated) for CMOS:

(11+11)x30x30 nm (3D) 19800 nm3 0.5 V 6 + (?) GHz 2 (“driver-loader”)

Estimated limits for 

TELC:

10x10x30 nm (3D) 3000 nm3 0.4- 0.2 V 10 Ghz 1 (functional device)

90 nm — 2002 

65 nm — 2006 

45 nm — 2008 

32 nm — 2010 

22 nm — 2011 

16 nm — 2013 

11 nm — approx. 

2015

ITRS (roadmap)

Phonsistor size: 



eet.bme.hu
© BME Department of Electron Devices, 2010.

Problems with CMOS: 
typical surface device

device limits (6 or even more interfaces)

scale down limits: depletion layers, 
gate-tunnel current -> direct tunnel 
distance: 2 nm)

Phonsistor: 

simple bulk

device

scale down limits: 
tunnel current, 
size effect on MIT

with less number 
of interfaces  
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P (power delay product), PDP: energy, related to 
transfer, store or process of one bit 

fJ

aJ

Ptd=W > kT ln2 thermodinamics

Ptdtd =Et > h/2p Heisenberg relation

CMOS

CNT

TELC
kT

one bit, two stable state
better chip cooling

[J/s]
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where:

thermal diffusion length (characteristic lenght at given time 

scale, SI units: m, value: ~10-8 m for 10 GHz

density of the environment (SiO2) and MIT material, 

respectively, SI units: kg/(m3) , value: 2650, 4600

specific heat capacity of the environment and MIT material, 

respectively, SI units: J/(kg K) 703 , 340-> 770

specific latent heat, SI units: J/(kg), value: 51410

characteristic size of the MIT device, value: 10-8 m (10 nm)

LLTcLTcLPW MITMITMITMITMITpth  333 

P product for  thermal electric gate

MIT

MITp cc

L

MITL

Energy for heating the environment + heating the MIT element itself + heat for phase transiton
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LLTcLTcLPW MITMITMITMITMITpth  333 

P product (aJ) for  thermal electric gate

2712361619  PW aJ

product (aJ) for CNT: ~400P

Energy for           heating the environment + heating the MIT element itself + heat for phase transiton 

product (aJ) for CMOS:  50-500-1000P
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Thermal electric logic circuit in the „gap”
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The “secret” of the huge performance of the human brain (after J. von 
Neumann, Neumann Janos) is, that 

it is analogue: higher excitation – higher response

it is digital: certain combination of excitations -> response

it is parallel: certain combination of excitations -> response

it is sequential: two (or more) subthreshold excitation 
within recovery time -> response (sequential AND function)

…depending on the given job!
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Electro-thermal integrated circuits (systems) are:

•analogue: higher excitation – higher response

•digital: certain combination of excitations -> response

•paralel: certain combination of excitations -> response

•sequential: two or (more) subthreshold excitation 

within recovery time (thermal time constant) -> response (memristor)

Combination network: 
(AND OR) gate

sequential: (AND) gate

SeMgO2-V2O5, Jc-E, 88 mm/5.82 mm (Pt elect.); 509 W , step 0.2 V, delay 0.5 s 
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…depending on the given job and  timing!



eet.bme.hu
© BME Department of Electron Devices, 2010.

Electro-thermal integrated circuit: a bit more…

•Electrical coupling: NOR (for longer distances too)

•Thermal (diffusion) coupling: OR (for the next gate only)

1 0 (low voltage level)

1

1 (high temperature level)

electrical coupling (for longer distances too)

chemical coupling (diffusion of ions)
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Electro-thermal integrated circuit: a bit more…

electrical coupling (for 
longer distances too)

chemical coupling
(diffusion of ions)

thermal transmission line 

even with an additional input

gate with three inputs
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Electro-thermal integrated circuit: even more…

chemical coupling
between non-
contacted cells

thermal diffusion between non-contacted

gates (subsystems or systems)

gate with three inputs

hormon release into the 
intercellular liquid

slow diffusion of hormons

heat emission
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Electro-thermal integrated circuit: even more…

thermal diffusion between non-contacted

gates (subsystems or systems)

gate with three inputs and light excited MIT 

effect

heat emission

different
coupling 
possibilities 
(thermal, 
electrical, 
optical): easy
communication 
with other kind 
of systems

retine

light excitation
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Experimental results: Nano-size VO2 switch-on

U1U2

U1

U2

on

off

1ms
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Nanosized experimental TELC gate
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Nanosized experimental TELC gate  
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Switching behavior of the nm-sized, vertical SMT resistor structure, 

“reverse” (negative) bias with respect to the n++ Si substrate. It can clearly 

be seen that for 75 °C and above no high-resistance region is present.
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SWOT

„Strength”
- extremely simple structure („bulk” resistors with common bottom 

electrodes, only two interfaces)

- better tolerance against radiation

- less physical limits considering the scaling down (10nm)

- compatible with the recent IC technology

„Weaknesses”
- thermal dissipation and

- cooling and temperature stabilising (thermal management)

- a very exact and very sophisticated electro-thermal-logic simulation and
new design principles are needed for proper realisation

„Opportunities”
- easy communication with other part of systems (electrical or
thermal coupling to CMOS, optical coupling)

- technological flexibility (horizontal, vertical or mixed realisation)

- design flexibility (signal paths for all directions-> brain like
operation)

„Threats”
- there are no data about reliability of the thermal-electric computing

- the thermal transport at nm scale is still unknown field
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