



Budapest University of Technology and Economics



### A fonzisztor - egy termikuselektronikus aktív eszköz. Thermal (nano?) electronics

### **Department of Electron Devices**









www.eet.bme.hu

"Nothing beats scaled silicon but nanotechnology can complement"

# Outline

- electro-thermal integrated circuit: basic concept
- the MIT effect
- MIT resistor as memristor
- new thermal-electric device (phonsistor) and the
- (CMOS compatible) thermal-electric logic circuit (TELC)
- nanosized CMOS versus TELC
- analogy between neurons and TELC
- some measured results (thermal OR and AND gate)
- S/W analysis





$$\beta = \frac{\partial I_{out}}{\partial I_{in}} = \frac{\partial I_{out}}{\partial T} \frac{\partial T}{\partial I_{in}} = 2I_{in}R_{in}R_{th} \frac{\partial I_{out}}{\partial T}$$
$$g_m = \frac{\partial I_{out}}{\partial V_{in}} = \frac{\partial I_{out}}{\partial T} \frac{\partial T}{\partial V_{in}} = 2V_{in} \frac{R_{th}}{R_{in}} \frac{\partial I_{out}}{\partial T}$$
$$A = \frac{\partial V_{out}}{\partial V_{in}} = \frac{\partial V_{out}}{\partial T} \frac{\partial T}{\partial V_{in}} = 2V_{in} \frac{R_{th}}{R_{in}} \frac{\partial V_{out}}{\partial T}$$

February 6, 2013

© BME Department of Electron Devices, 2012.

## Electro-thermal integrated circuit: the thermal-function 4-quadrant multiplier



diffused resistance heaters arrays of Si-Al contacts

$$V_{out} = V_{in}^2 NS \frac{R_{th}}{R_{in}}$$

$$A = \frac{\partial V_{out}}{\partial V_{in}} = 2V_{in} \frac{R_{th}}{R_{in}} NS$$

Author: V. Székely Technical University of Budapest

eet.bme.hu



Fig. 2 Experimental thermal multiplier a Photomicrograph of the circuit. The overall dimensions are 710  $\times$  560  $\mu$ m b Connection for the multiplier operation

*Performance data:* A single q.t.c. block (detail according to Fig. 1) gives a sensitivity of about  $72 \mu \text{ V/mW}$ . The input resistance of the multiplier connected as, shown in Fig. 2b is 1-1 k $\Omega$ , whereas its output resistance is 11 k $\Omega$ . The relation between the input and output d.c. voltages is

$$U_{OUT} = 6 \times 10^{-5} \times U_{IN1} U_{IN2} \qquad (4)$$

in volts. Fig. 3 demonstrates the good linearity of the experimental multiplier.

A distinct feature of the circuit is that the cutoff frequency for input signals is greater by orders of magnitude than that

ELECTRONICS LETTERS 22nd July 1976 Vol. 12 No. 15

© BME Department of Electron Devices, 2010.

# Electro-thermal integrated circuit: basic concept (TCL: thermally coupled logic)



 $A = \frac{\partial V_{out}}{\partial V_{in}} = 2V_{in}\frac{R_{th}}{R_{in}}\alpha$ 

© BME Department of Electron Devices, 2010.

# Electro-thermal integrated circuit: basic concept (TCL: thermally coupled logic)

© BME Department of Electron Devices, 2012.

Ø

#### Metal-Insulator-Transition (MIT) $VO_2$ thin films:





Optical and electrical switching characteristics of MIT effect induced by Joule-heating method. Very high optical density films with  $T(\lambda) \approx 0$  @ 1550 µm in metal state(red line).



# **Applications**

• (New) functional device by thermal coupling (phonon coupler, phonsistor).

#### United States Patent [19]

[54] SWITCHING INVERTER WITH THERMOCONDUCTIVE MATERIALS

3,753,23 3,790,86

| 31 | 8/1973 | Hilsum   | 357/17 |
|----|--------|----------|--------|
| 57 | 2/1974 | Hayakawa | 357/17 |
| n  | 4/1074 | Valana   | 257/11 |

[11]



Cahen

Properties of the phonsistor:

- active device
- ohmic input and
- thyristor-like output characteristics
- it saves the output state

#### Ballistic transport, thermalisation in the SMT:



4,059,774

Nov. 22, 1977 [45]



# **Phonsistor – bipolar transistor**





minority carrier diffusion





# Using V as power supply:

$$I_{out} = \frac{V}{R_{MIT}(T)} = \frac{V}{R_{MIT}(T_{env} + I_{in}^2 R_{in} R_{th})} = \frac{V}{R_{MIT}(T_{env} + \frac{V_{in}^2}{R_{in}} R_{th})}$$

$$\beta = \frac{\partial I_{out}}{\partial I_{in}} = \frac{\partial I_{out}}{\partial T} \frac{\partial T}{\partial I_{in}} = 2I_{in}R_{in}R_{th} \frac{V^2}{R_{MIT}} \frac{\partial R_{MIT}}{\partial T}$$
$$g_m = \frac{\partial I_{out}}{\partial V_{in}} = \frac{\partial I_{out}}{\partial T} \frac{\partial T}{\partial V_{in}} = 2V_{in} \frac{R_{th}}{R_{in}} \frac{V^2}{R_{MIT}} \frac{\partial R_{MIT}}{\partial T}$$

 $(V_{in})^2/R_{in}$ ) is much higher than the power dissipated on the MIT resistor ( $l^2R_{MIT}$ )

# Using I as power supply:

$$V_{out} = IR_{MIT} (T) = IR_{MIT} \left( T_{env} + \frac{V_{in}^2}{R_{in}} R_{th} \right)$$

$$A = \frac{\partial V_{out}}{\partial V_{in}} = I \frac{\partial R_{MIT}(T)}{\partial T} \cdot \frac{\partial T}{\partial V_{in}} = 2V_{in}I \cdot \frac{\partial R_{MIT}}{\partial T} \cdot \frac{R_{th}}{R_{in}}$$

 $(V_{in})^2/R_{in}$ ) is much higher than the power dissipated on the MIT resistor ( $l^2R_{MIT}$ )



# High signal condition at the output:





### **Applications**

• New functional device by mutual thermal coupling (reciproque phonsistor).

V<sub>out</sub>I<sub>out</sub>

4.000-06

SeMgO2-V2O5, Jc-E, 88 µm5.82 µm (Pt elect.); 509 🚨, step 0.2 V, delay 0.5 s

3,0E+05

1,0E+03

l<sub>in</sub>

New functional logic cell by mixed thermal coupling



# Input(s), independent from each other

**Properties:** 

- active device (thyristor-like characteristics),
- it saves both input and output states
- symmetric (symmetry depends on size of the resistors)
- and "reciproque" ("input" can be switched on from the "output", too) !

ScMgO2-V2O5, Jr-E, 88 µm5.82 µm (Pt elect.); 509 🖨, step 0.2 V, delay 0.5

3,0E+05 2,0E+05 1,0E+05  $V_{in}I_{in}$ 

 $\mathbf{V}_{\mathsf{out}}$ 

2.008+06

out

- the output conditions can be seen from the input side, too !

Thermally coupled logic (TCL)→ next slides!



# Electro-thermal integrated circuit: basic concept (TCL: thermally coupled logic)





Patent (phonsistor, thermal-electric integrated circuit) submitted to the Hungarian Patent Office by the **Budapest University of Technology and Economics** 



Thermal diffusivity:

ity: 
$$\alpha = \frac{k}{\rho c_p}$$

In heat transfer analysis, **thermal diffusivity** (symbol:  $\alpha$ ) is the ratio of thermal conductivity to volumetric heat capacity.

where:

 $k^{-}$ 

- : thermal conductivity (SI units: W/(m K))
- $\rho_{C_p}^{c}$  : volumetric heat capacity (SI units: J/(m<sup>3</sup>K))
  - P : density (SI units: kg/(m<sup>3</sup>))
- <sup>C</sup><sub>p</sub> : specific heat capacity (SI units: J/(kg K))

Thermal diffusion length (characteristic lenght at given time scale):

$$L_{th} = \sqrt{\alpha t}$$

 $\alpha \sim 10^{-6}$  m<sup>2</sup>/s (SiO<sub>2</sub>), time is 10<sup>-10</sup> sec, than L<sub>th</sub>=10<sup>-8</sup> m (10nm)  $\alpha \sim 6x10^{-5}$  m<sup>2</sup>/s (Si), time is 10<sup>-10</sup> sec, than L<sub>th</sub>=7x10<sup>-8</sup> m (70nm)

## **Electro-thermal integrated circuit: a bit** more...



IC, possibly stacked, see more later)



# Electro-thermal integrated circuit: thermal transmission line with three OR/NOR input



propagation of the thermal "1" state, signal regeneration



© BME Department of Electron Devices, 2010.

#### Some ideas for practical realisations:

#### Vertical (three dimensional thermal IC), cross section:





# Some ideas for practical realisations: CMOS compatibility

Vertical (three dimensional thermal and CMOS IC), cross section:



#### Some ideas for practical realisations: real size and scalability



|                                                   | Geometry, volume                            | Power<br>supply<br>voltage | Clock<br>frequency | Number of<br>components |
|---------------------------------------------------|---------------------------------------------|----------------------------|--------------------|-------------------------|
| Recent CMOS gate properties:                      | (22+22)x50x50 nm, 110000 nm <sup>3</sup>    | 0.8-0.7 V                  | 4 GHz              | 2 ("driver-loader")     |
| Theoretical limits (over-<br>estimated) for CMOS: | (11+11)x30x30 nm (3D) 19800 nm <sup>3</sup> | 0.5 V                      | 6 + (?) GHz        | 2 ("driver-loader")     |
| Estimated limits for<br>TELC:                     | 10x10x30 nm (3D) 3000 nm³                   | 0.4- 0.2 V                 | 10 Ghz             | 1 (functional device)   |

#### © BME Department of Electron Devices, 2010.

# Problems with CMOS: typical surface device

device limits (6 or even more interfaces)



Phonsistor: simple bulk device

# with less number of interfaces



scale down limits: depletion layers, gate-tunnel current -> direct tunnel distance: 2 nm)

scale down limits: tunnel current, size effect on MIT



 $P \tau$  (power delay product), PDP: energy, related to transfer, store or process of one bit





© BME Department of Electron Devices, 2010.

# P au product (aJ) for thermal electric gate

 $W = P\tau = L_{th}^{3}\rho c_{p}\Delta T + L_{MIT}^{3}\rho_{MIT}c_{MIT}\Delta T + L_{MIT}^{3}\rho_{MIT}L$ 

Energy for heating the environment + heating the MIT element itself + heat for phase transiton

#### $W = P\tau = 19 + 16 + 236 = 271$ aJ

# $P\tau$ product (aJ) for CNT: ~400

# $P\tau$ product (aJ) for CMOS: 50-500-1000

#### Thermal electric logic circuit in the "gap"



© BME Department of Electron Devices, 2010.

# The "secret" of the huge performance of the human brain (after J. von Neumann, Neumann Janos) is, that

it is analogue: higher excitation – higher response

it is digital: certain combination of excitations -> response

it is parallel: certain combination of excitations -> response



it is sequential: two (or more) subthreshold excitation within recovery time -> response (sequential AND function)

...depending on the given job!



# Electro-thermal integrated circuits (systems) are:



© BME Department of Electron Devices, 2010.

### Electro-thermal integrated circuit: a bit more...

•Electrical coupling: NOR (for longer distances too)





# Electro-thermal integrated circuit: a bit more...

#### gate with three inputs





# electrical coupling (for longer distances too)



thermal transmission line even with an additional input

### Electro-thermal integrated circuit: even more...



## Electro-thermal integrated circuit: even more...





## **Experimental results: Nano-size VO<sub>2</sub> switch-on**



© BME Department of Electron Devices, 2010.

# Nanosized experimental TELC gate





## Nanosized experimental TELC gate







Switching behavior of the nm-sized, vertical SMT resistor structure, "reverse" (negative) bias with respect to the n<sup>++</sup> Si substrate. It can clearly be seen that for 75 °C and above no high-resistance region is present.

# SWOT

# "Strength"

- extremely simple structure ("bulk" resistors with common bottom electrodes, only two interfaces)
- better tolerance against radiation
- less physical limits considering the scaling down (10nm)
- compatible with the recent IC technology

# "Weaknesses"

- thermal dissipation and
- cooling and temperature stabilising (thermal management)
- a very exact and very sophisticated electro-thermal-logic simulation and new design principles are needed for proper realisation

# "Opportunities"

- easy communication with other part of systems (electrical or thermal coupling to CMOS, optical coupling)

- technological flexibility (horizontal, vertical or mixed realisation)
- design flexibility (signal paths for all directions-> brain like operation)

# "Threats"

- there are no data about reliability of the thermal-electric computing
- the thermal transport at nm scale is still unknown field





Budapest University of Technology and Economics



# Thank You for your attention!

The research was partially funded by the project No. NN 110867 of the Hungarian Scientific Research Fund (OTKA).

# **Department of Electron Devices**









www.eet.bme.hu